Alloying of Cu with Ru Enabling the Relay Catalysis for Reduction of Nitrate to Ammonia

Adv Mater. 2023 May;35(19):e2202952. doi: 10.1002/adma.202202952. Epub 2023 Mar 31.

Abstract

Involving eight electron transfer process and multiple intermediates of nitrate (NO3 - ) reduction reaction leads to a sluggish kinetic and low Faradaic efficiency, therefore, it is essential to get an insight into the reaction mechanism to develop highly efficient electrocatalyst. Herein, a series of reduced-graphene-oxide-supported RuCu alloy catalysts (Rux Cux /rGO) are fabricated and used for the direct reduction of NO3 - to NH3 . It is found that the Ru1 Cu10 /rGO shows the ammonia formation rate of 0.38 mmol cm-2 h-1 (loading 1 mg cm-2 ) and the ammonia Faradaic efficiency of 98% under an ultralow potential of -0.05 V versus Reversible Hydrogen Electode (RHE), which is comparable to Ru catalyst. The highly efficient activity of Ru1 Cu10 /rGO can be attributed to the synergetic effect between Ru and Cu sites via a relay catalysis, in which the Cu shows the exclusively efficient activity for the reduction of NO3 - to NO2 - and Ru exhibits the superior activity for NO2 - to NH3 . In addition, the doping of Ru into Cu tunes the d-band center of alloy and effectively modulates the adsorption energy of the NO3 - and NO2 - , which promotes the direct reduction of NO3 - to NH3 . This synergetic electrocatalysis strategy opens a new avenue for developing highly efficient multifunctional catalysts.

Keywords: RuCu alloy; nitrate reduction; relay catalysis; synergetic effect.