Key Targets and Molecular Mechanisms of the Fat-soluble Components of Ginseng for Lung Cancer Treatment

Appl Biochem Biotechnol. 2023 Nov;195(11):6495-6515. doi: 10.1007/s12010-023-04409-w. Epub 2023 Mar 4.

Abstract

Objective: To analyze the regulatory effects and key targets of the fat-soluble components of ginseng in lung cancer.

Methods: Gas chromatography-mass spectrometry and the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform were used to analyze and identify the fat-soluble components of ginseng. Network pharmacology was used to analyze the therapeutic targets of the fat-soluble components of ginseng in lung cancer and screen key proteins. In vitro assays were conducted to verify the effects of the active fat-soluble components of ginseng on proliferation and apoptosis in lung cancer cells and to verify the regulation of key proteins.

Results: Ten active fat-soluble components of ginseng were screened for follow-up. Network pharmacology showed 33 overlapping targets between the active fat-soluble components of ginseng and lung cancer, and functional enrichment of the targets showed involvement of response to nitrogen, hormone response, membrane raft, and positive regulation of external stimulus. Pathway enrichment analysis showed vascular endothelial growth factor (VEGF) signaling, adipocyte lipolysis regulation, chronic myelogenous leukemia, endocrine resistance, and NSCLC-related pathways. A protein-protein interaction network was constructed, and the top 10 targets were selected in accordance with their scores. Ultimately, five target genes (EGFR, KDR, MAPK3, PTPN11, and CTNNB1) were selected in combination with literature mining for subsequent experimental verification. Proliferation assays showed that the growth of lung cancer cells was significantly decreased in a concentration-dependent manner in the fat-soluble components of ginseng intervention group compared with controls. Flow cytometry showed that active fat-soluble components of ginseng promoted apoptosis in a concentration-dependent manner in lung cancer cells. Western blot and quantitative real-time PCR showed that levels of the five key proteins and mRNAs were significantly decreased in the intervention group; furthermore, histone protein and mRNA levels were significantly higher in the high-concentration intervention group compared with the low-concentration group.

Conclusion: The active fat-soluble components of ginseng inhibited the growth of lung cancer cells and promoted apoptosis. The underlying regulatory mechanisms may be related to signaling pathways involving EGFR, KDR, MAPK3, PTPN11, and CTNNB1.

Keywords: Fat-soluble components; Ginseng; Lung cancer; Network pharmacology; Pathway enrichment analysis; Regulatory mechanism.

MeSH terms

  • Adipocytes
  • Drugs, Chinese Herbal* / pharmacology
  • ErbB Receptors
  • Lung Neoplasms* / drug therapy
  • Lung Neoplasms* / genetics
  • Molecular Docking Simulation
  • Panax*
  • Vascular Endothelial Growth Factor A

Substances

  • Vascular Endothelial Growth Factor A
  • ErbB Receptors
  • Drugs, Chinese Herbal