Effect of near-infrared laser treatment on improving erectile function in rats with diabetes mellitus

Andrology. 2023 Oct;11(7):1472-1483. doi: 10.1111/andr.13422. Epub 2023 Mar 27.

Abstract

Background: Diabetes mellitus-induced erectile dysfunction is difficult to treat. The oxidative stress created by diabetes mellitus is a major cause of injuries to the corpus cavernosum, thereby resulting in erectile dysfunction. Near-infrared laser has already been shown to be effective in treating multiple brain disorders because of its antioxidative stress effect.

Objectives: To investigate whether a near-infrared laser improves the erectile function of diabetes mellitus-induced erectile dysfunction rats through its antioxidative stress effect.

Materials and methods: Knowing its advantage of reasonable deep tissue penetration and good photoactivation on mitochondria, a near-infrared laser with wavelength of 808 nm was used in the experiment. Since the internal and external corpus cavernosum were covered by different tissue layers, the laser penetration rates of the internal and external corpus cavernosum were measured separately. Different radiant exposure settings were applied: in the initial experiment, 40 male Sprague-Dawley rats were randomly assigned to five groups, normal controls, and streptozotocin-induced diabetes mellitus rats that 10 weeks later received various radiant exposures (J/cm2 ) from the near-infrared laser (DM0J(DM+NIR 0 J/cm2 ), DM1J, DM2J, and DM4J) in the subsequent 2 weeks. Erectile function was then assessed 1 week after near-infrared treatment. It was found that the initial radiant exposure setting was not optimal according to the Arndt-Schulz rule. We performed a second experiment using a different radiant exposure setting. Forty male rats were randomly divided into five groups (normal controls, DM0J, DM4J, DM8J, and DM16J), and the near-infrared laser was again applied according to the new setting, and erectile function was assessed as in the first experiment. Histologic, biochemical, and proteomic analyses were then conducted.

Results: Recovery of erectile function of varying degrees was observed in the near-infrared treatment groups, and radiant exposure of 4 J/cm2 achieved optimal results. The DM4J group showed improvement in mitochondrial function and morphology in diabetes mellitus rats, and it was found that oxidative stress levels were significantly reduced by near-infrared exposure. The tissue structure of the corpus cavernosum was also improved by near-infrared exposure. The proteomics analysis confirming multiple biologic processes were changed by diabetes mellitus and near-infrared.

Discussion and conclusion: Near-infrared laser activated mitochondria, improved oxidative stress, repaired the damage to penile corpus cavernosum tissue structures caused by diabetes mellitus, and improved erectile function in diabetes mellitus rats. These results thus raise the possibility that human patients with diabetes mellitus-induced erectile dysfunction may respond to near-infrared therapy in a manner that parallels the responses we observed in animal study.

Keywords: diabetes mellitus; erectile dysfunction; near-infrared laser therapy; oxidative stress; photobiomodulation; rats.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Diabetes Mellitus, Experimental* / complications
  • Diabetes Mellitus, Experimental* / pathology
  • Erectile Dysfunction* / etiology
  • Erectile Dysfunction* / therapy
  • Humans
  • Male
  • Penile Erection
  • Penis / pathology
  • Proteomics
  • Rats
  • Rats, Sprague-Dawley