Deciphering the interactions between lipids and red wine polyphenols through the gastrointestinal tract

Food Res Int. 2023 Mar:165:112524. doi: 10.1016/j.foodres.2023.112524. Epub 2023 Jan 27.

Abstract

This paper investigates the mutual interactions between lipids and red wine polyphenols at different stages of the gastrointestinal tract by using the simgi® dynamic simulator. Three food models were tested: a Wine model, a Lipid model (olive oil + cholesterol) and a Wine + Lipid model (red wine + olive oil + cholesterol). With regard to wine polyphenols, results showed that co-digestion with lipids slightly affected the phenolic profile after gastrointestinal digestion. In relation to lipid bioaccessibility, the co-digestion with red wine tended to increase the percentage of bioaccessible monoglycerides, although significant differences were not found (p > 0.05). Furthermore, co-digestion with red wine tended to reduce cholesterol bioaccessibility (from 80 to 49 %), which could be related to the decrease in bile salt content observed in the micellar phase. For free fatty acids, almost no changes were observed. At the colonic level, the co-digestion of red wine and lipids conditioned the composition and metabolism of colonic microbiota. For instance, the growth [log (ufc/mL)] of lactic acid bacteria (6.9 ± 0.2) and bifidobacteria (6.8 ± 0.1) populations were significantly higher for the Wine + Lipid food model respect to the control colonic fermentation (5.2 ± 0.1 and 5.3 ± 0.2, respectively). Besides, the production of total SCFAs was greater for the Wine + Lipid food model. Also, the cytotoxicity of the colonic-digested samples towards human colon adenocarcinoma cells (HCT-116 and HT-29) was found to be significantly lower for the Wine and Wine + Lipid models than for the Lipid model and the control (no food addition). Overall, the results obtained using the simgi® model were consistent with those reported in vivo in the literature. In particular, they suggest that red wine may favourably modulate lipid bioaccessibility - a fact that could explain the hypocholesterolemic effects of red wine and red wine polyphenols observed in humans.

Keywords: Cholesterol; Digestion; Lipids; Microbiota; Polyphenols; Red wine.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenocarcinoma*
  • Colonic Neoplasms*
  • Humans
  • Olive Oil
  • Polyphenols
  • Wine*

Substances

  • Polyphenols
  • Olive Oil