Ultrafast Resonant State Formation by the Coupling of Rydberg and Dark Autoionizing States

Phys Rev Lett. 2023 Feb 17;130(7):073201. doi: 10.1103/PhysRevLett.130.073201.

Abstract

Studying the dynamics of dark states is challenging due to their inability to undergo single-photon emission or absorption. This challenge is made even more difficult for dark autoionizing states owing to their ultrashort lifetime of a few femtoseconds. High-order harmonic spectroscopy recently appeared as a novel method to probe the ultrafast dynamics of a single atomic or molecular state. Here, we demonstrate the emergence of a new type of ultrafast resonance state as a manifestation of coupling between Rydberg and a dark autoionizing state dressed by a laser photon. Through high-order harmonic generation, this resonance results in extreme ultraviolet light emission that is more than one order of magnitude stronger than for the off-resonance case. The induced resonance can be leveraged to study the dynamics of a single dark autoionizing state and the transient changes in the dynamics of real states due to their overlap with the virtual laser-dressed states. In addition, the present results allow the generation of coherent ultrafast extreme ultraviolet light for advanced ultrafast science applications.