Theoretical design of new insensitive high energy metal complexes based on the double fused-ring insensitive ligands strategy

J Mol Model. 2023 Mar 2;29(3):84. doi: 10.1007/s00894-023-05478-8.

Abstract

Context: In this work, 24 new nitrogen-rich fused-ring energetic metal complexes were designed based on the double fused-ring insensitive ligands strategy. First, 7-nitro-3-(1H-tetrazol-5-yl)-[1,2,4]triazolo[5,1-c][1,2,4]triazin-4-amine and 6-amino-3-(4H,8H-bis([1,2,5]oxadiazolo)[3,4-b:3',4'-e]pyrazin-4-yl)-1,2,4,5-tetrazine-1,5-dioxide were linked together by coordinating with metals cobalt and copper. Then, three energetic groups (NH2, NO2, and C(NO2)3) were introduced into the system to modify the structure and adjust the performance. Then, their structures and properties were investigated theoretically; the effects of different metals and small energetic groups were studied also. Finally, 9 compounds which have both higher energy and lower sensitivity than the famous high energy compound compound 1,3,5,7-tetranitro-1,3,5,7-tetrazocine were selected out. In addition, it was found that copper, NO2, and C(NO2)3 could increase the energy while cobalt and NH2 would be helpful for reducing the sensitivity.

Methods: Calculations were performed at the TPSS/6-31G(d) level by using the Gaussian 09 software.

Keywords: Energetic compounds; Insensitive high energy; Metal complexes.