Current understanding of antibiotic-associated dysbiosis and approaches for its management

Ther Adv Infect Dis. 2023 Feb 24:10:20499361231154443. doi: 10.1177/20499361231154443. eCollection 2023 Jan-Dec.

Abstract

Increased exposure to antibiotics during early childhood increases the risk of antibiotic-associated dysbiosis, which is associated with reduced diversity of gut microbial species and abundance of certain taxa, disruption of host immunity, and the emergence of antibiotic-resistant microbes. The disruption of gut microbiota and host immunity in early life is linked to the development of immune-related and metabolic disorders later in life. Antibiotic administration in populations predisposed to gut microbiota dysbiosis, such as newborns, obese children, and children with allergic rhinitis and recurrent infections; changes microbial composition and diversity; exacerbating dysbiosis and resulting in negative health outcomes. Antibiotic-associated diarrhea (AAD), Clostridiodes difficile-associated diarrhea (CDAD), and Helicobacter pylori infection are all short-term consequences of antibiotic treatment that persist from a few weeks to months. Changes in gut microbiota, which persist even 2 years after antibiotic exposure, and the development of obesity, allergies, and asthma are among the long-term consequences. Probiotic bacteria and dietary supplements can potentially prevent or reverse antibiotic-associated gut microbiota dysbiosis. Probiotics have been demonstrated in clinical studies to help prevent AAD and, to a lesser extent, CDAD, as well as to improve H pylori eradication rates. In the Indian setting, probiotics (Saccharomyces boulardii and Bacillus clausii) have been shown to reduce the duration and frequency of acute diarrhea in children. Antibiotics may exaggerate the consequences of gut microbiota dysbiosis in vulnerable populations already affected by the condition. Therefore, prudent use of antibiotics among neonates and young children is critical to prevent the detrimental effects on gut health.

Keywords: Clostridiodes difficile-associated diarrhea; Helicobacter pylori infection; antibiotic resistance genes; antibiotic-associated diarrhea; antibiotic-associated dysbiosis; gut microbiota; gut microbiota dysbiosis; probiotics.

Publication types

  • Review