Surface plasmon-enhanced dark-field microsphere-assisted microscopy

Opt Express. 2023 Feb 27;31(5):8641-8649. doi: 10.1364/OE.484226.

Abstract

We present for the first time a surface plasmon-enhanced dark-field microsphere-assisted microscopy in imaging both low-contrast dielectric objects and metallic ones. We demonstrate, using an Al patch array as the substrate, the resolution and contrast in imaging low-contrast dielectric objects are improved compared to that of the metal plate substrate and a glass slide in dark-field microscopy (DFM). 365-nm-diameter hexagonally arranged SiO nanodots assembled on the three substrates can be resolved, with the contrast varied from 0.23 to 0.96, and the 300-nm-diameter hexagonally close-packed polystyrene nanoparticles can only be discerned on the Al patch array substrate. The resolution can be further improved by using the dark-field microsphere-assisted microscopy, and an Al nanodot array with a nanodot diameter of ∼65 nm and a center-to-center spacing of 125 nm can be just resolved, which cannot be distinguished in a conventional DFM. The focusing effect of the microsphere, as well as the excitation of the surface plasmons, provides evanescent illumination with enhanced local electric field (E-field) on an object. The enhanced local E-field acts as a near-field excitation source to enhance the scattering of the object, resulting in the improvement of imaging resolution.