High performance laser-driven flyers based on a refractory metamaterial perfect absorber

Opt Express. 2023 Feb 27;31(5):7237-7248. doi: 10.1364/OE.484707.

Abstract

Laser-driven flyers (LDFs), which can drive metal particles to ultra-high speeds by feeding high-power laser, have been widely used in many fields, such as ignition, space debris simulation, and dynamic high-pressure physics. However, the low energy-utilization efficiency of the ablating layer hinders the development of LDF devices towards low power consumption and miniaturization. Herein, we design and experimentally demonstrate a high-performance LDF based on the refractory metamaterial perfect absorber (RMPA). The RMPA consists by a layer of TiN nano-triangular array, a dielectric layer and a layer of TiN thin film, and is realized by combing the vacuum electron beam deposition and colloid-sphere self-assembled techniques. RMPA can greatly improve the absorptivity of the ablating layer to about 95%, which is comparable to the metal absorbers, but obviously larger than that of the normal Al foil (∼10%). This high-performance RMPA brings a maximum electron temperature of ∼7500 K at ∼0.5 µs and a maximum electron density of ∼1.04 × 1016 cm-3 at ∼1 µs, which are higher than that the LDFs based on normal Al foil and metal absorbers due to the robust structure of RMPA under high-temperature. The final speed of the RMPA-improved LDFs reaches to about 1920 m/s measured by the photonic Doppler velocimetry system, which is about 1.32 times larger than the Ag and Au absorber-improved LDFs, and about 1.74times larger than the normal Al foil LDFs under the same condition. This highest speed unambiguously brings a deepest hole on the Teflon slab surface during the impact experiments. The electromagnetic properties of RMPA, transient speed and accelerated speed, transient electron temperature and density have been systematically investigated in this work.