Dissolved biochar fractions and solid biochar particles inhibit soil acidification induced by nitrification through different mechanisms

Sci Total Environ. 2023 May 20:874:162464. doi: 10.1016/j.scitotenv.2023.162464. Epub 2023 Feb 27.

Abstract

Biochar can inhibit soil acidification by decreasing the H+ input from nitrification and improving soil pH buffering capacity (pHBC). However, biochar is a complex material and the roles of its different components in inhibiting soil acidification induced by nitrification remain unclear. To address this knowledge gap, dissolved biochar fractions (DBC) and solid biochar particles (SBC) were separated and mixed thoroughly with an amended Ultisol. Following a urea addition, the soils were subjected to an incubation study. The results showed that both the DBC and SBC inhibited soil acidification by nitrification. The DBC inhibited soil acidification by decreasing the H+ input from nitrification, while SBC enhanced the soil pHBC. The DBC from peanut straw biochar (PBC) and rice straw biochar (RBC) decreased the H+ release by 16 % and 18 % at the end of incubation. The decrease in H+ release was attributed to the inhibition of soil nitrification and net mineralization caused by the toxicity of the phenols in DBC to soil bacteria. The abundance of ammonia-oxidizing bacteria (AOB) and total bacteria decreased by >60 % in the treatments with DBC. The opposite effects were observed in the treatments with SBC. Soil pHBC increased by 7 % and 19 % after the application of solid RBC and PBC particles, respectively. The abundance of carboxyl on the surface of SBC was mainly responsible for the increase in soil pHBC. Generally, the mixed application of DBC and SBC was more effective at inhibiting soil acidification than their individual applications. The negative impacts of dissolved biochar components on soil microorganisms need to be closely monitored.

Keywords: Biochar; Dissolved fraction; Nitrification; Soil acidification; Solid particle.

MeSH terms

  • Arachis
  • Bacteria
  • Charcoal / chemistry
  • Hydrogen-Ion Concentration
  • Nitrification*
  • Soil Microbiology
  • Soil* / chemistry

Substances

  • Soil
  • biochar
  • Charcoal