First Report of Grey Spot on Tobacco caused by Alternaria alstroemeriae in China

Plant Dis. 2023 Mar 1. doi: 10.1094/PDIS-11-22-2705-PDN. Online ahead of print.

Abstract

Tobacco (Nicotiana tabacum L.) is an important economic crop belonging to family Solanaceae and is widely cultivated in China (Basit 2021). From April to July in 2022, a foliar disease with symptoms similar to grey spot was extensively observed on tobacco in Guangxi Province (24°52' N, 111°23' E), China. Field surveys were conducted in 18 towns and the disease incidence was 0.89% to 6.95%. Symptomatic leaves displayed irregular, dark brown lesions surrounded by yellow halos and accompanied with black conidiomata in gray centers (Fig 1A-E). Symptomatic leaves were collected from 54 different tobacco plants. After surface sterilization (0.5 min in 75% ethanol and 1 min in 3% NaOCl, washed three times with sterilized distilled water), small pieces of symptomatic leaf tissue (0.2 × 0.2 cm) were plated on PDA and incubated at 25°C for 5 days (Fang 2007). Three single-spore isolates, GUCC BZ6-3, GUCC LJ3-4, and GUCC XH1-13 were obtained, which were identical in morphology and molecular analysis. Therefore, the representative isolate GUCC BZ6-3 was used for further study. The colonies on PDA were villiform, greyish (Fig 1F-G). Conidia were abundant, ovoid, with 2-6 transverse septa and 1-2 longitudinal septa 12.60 (9.43 to 14.76) × 4.30 (3.57 to 5.14) μm (n=50) (Fig 1H-S). The morphological features were consistent with Alternaria alstroemeriae E.G. Simmons & C.F. Hill (Simmons 2007; Nishikawa & Nakashima, 2013). The pathogen was confirmed to be A. alstroemeriae by amplification and sequencing of the ITS, GAPDH, LSU, TEF1, and RBP2 genes using primers ITS1/ITS4, gpd1/gpd2, LSU1Fd/LR5, EF1-728F/EF1-986R, and RPB2-5F2/fRPB2-7cR, respectively (Woudenberg 2013). The sequences of the PCR products were deposited in GenBank with accession numbers ON693856 (RBP2), ON714497 (ITS), ON694345 (GAPDH), ON931420 (TEF1) and ON714499 (LSU). BLAST searches of the obtained sequences revealed 99% (565/567 nucleotides), 99% (577/579 nucleotides), 99% (908/911 nucleotides), 99% (238/239 nucleotides), and 99% (751/753 nucleotides) homology with those of A. alstroemeriae in GenBank (MH863036, KP124154, MH874589, KP125072, and KP124765, respectively). Phylogenetic analyses of the sequence data consisted of Bayesian and Maximum likelihood analyses of the combined aligned dataset (MEGA 7.0 and PhyloSuite 1.2.2). The GUCC BZ6-3 in a well-supported cluster with A. alstroemeriae (Fig 2). The pathogen was thus identified as A. alstroemeriae based on morphological characterization and molecular analyses. The pathogenicity of GUCC BZ6-3 was tested through pot assay and carried out three times (Fang 2007). Ten healthy 30-day-old tobacco plants were inoculated by spraying a spore suspension (106 spores·ml-1) of strain GUCC BZ6-3 onto leaves until runoff, and the control leaves were sprayed with sterile water. The plants were maintained at 28°C with high relative humidity (95%) in a growth chamber. The symptoms developed on all inoculated leaves but not on the control. The lesions were first visible 48 h after inoculation, and typical lesions similar to those observed on field plants appeared after 7 days. The same fungus was reisolated and identified based on the morphological characterization and molecular analyses from the infected leaves but not from the noninoculated leaves. Results of pathogenicity experiments fulfilled Koch's postulates. To our knowledge, this is the first report of grey spot disease on tobacco caused by A. alstroemeriae in China. Our findings would be of great importance for the diagnosis and control of the emerging grey spot on tobacco.

Keywords: Alternaria alstroemeriae; grey spot; pathogenicity; tobacco.