Theoretical Evaluation of Highly Efficient Nitrate Reduction to Ammonia on InBi

J Phys Chem Lett. 2023 Mar 9;14(9):2410-2415. doi: 10.1021/acs.jpclett.2c03900. Epub 2023 Mar 1.

Abstract

Electrocatalytic reduction of nitrate to ammonia has become a popular approach for wastewater treatment and ammonia production. However, the development of highly efficient electrocatalysts remains a great challenge. Herein, we systematically studied the potential of InBi for nitrate reduction to ammonia (NRA) based on density functional theory (DFT) calculations. Our results reveal that InBi exhibits high activity for NRA via an O-end pathway, where the free energy evolution of all intermediates is downhill in the most favorable elementary steps. The activation of nitrate originates from the strong orbital hybridization between oxygen and indium atoms, leading to an enhanced charge transfer as well as NO3- adsorption. In particular, the competing hydrogen evolution reaction (HER) is effectively suppressed due to the weak adsorption of proton. Our study not only proves the great electrocatalytic potential of InBi as a novel catalyst for NRA but also points out a new way to design NRA electrocatalysts for practical applications.