Strategies for Controlled Growth of Transition Metal Dichalcogenides by Chemical Vapor Deposition for Integrated Electronics

ACS Mater Au. 2022 Jul 8;2(6):665-685. doi: 10.1021/acsmaterialsau.2c00029. eCollection 2022 Nov 9.

Abstract

In recent years, transition metal dichalcogenide (TMD)-based electronics have experienced a prosperous stage of development, and some considerable applications include field-effect transistors, photodetectors, and light-emitting diodes. Chemical vapor deposition (CVD), a typical bottom-up approach for preparing 2D materials, is widely used to synthesize large-area 2D TMD films and is a promising method for mass production to implement them for practical applications. In this review, we investigate recent progress in controlled CVD growth of 2D TMDs, aiming for controlled nucleation and orientation, using various CVD strategies such as choice of precursors or substrates, process optimization, and system engineering. We then survey different patterning methods, such as surface patterning, metal precursor patterning, and postgrowth sulfurization/selenization/tellurization, to mass produce heterostructures for device applications. With these strategies, various well-designed architectures, such as wafer-scale single crystals, vertical and lateral heterostructures, patterned structures, and arrays, are achieved. In addition, we further discuss various electronics made from CVD-grown TMDs to demonstrate the diverse application scenarios. Finally, perspectives regarding the current challenges of controlled CVD growth of 2D TMDs are also suggested.

Publication types

  • Review