Exploring Rhenium Arene Piano-Stool Chemistry with [Re(η6-C6H6)(NCCH3)3]+: A Powerful Semi-Solvated Precursor

Inorg Chem. 2023 Mar 13;62(10):4227-4237. doi: 10.1021/acs.inorgchem.2c04346. Epub 2023 Feb 28.

Abstract

Thermal treatment of the ReIII hydride complex [ReH(η5-C6H7)(η6-C6H6)]+ in CH3CN results in the formation of [Re(η6-C6H6)(NCCH3)3]+. This semi-solvated complex is remarkably stable under an ambient atmosphere and exhibits a fast CH3CN self-exchange, which facilitates substitution reactions. The CH3CN ligands are replaced by σ-donating phosphines such as trimethyl phosphine (PMe3), triphenyl phosphine (PPh3), or the bidentate 1,2-bis(diphenylphosphino)ethane (dppe) to afford [Re(η6-C6H6)(NCCH3)3-x(PR3)x]+ (if R = Me, then x = 2; if R = Ph, then x = 1 or 2) or [Re(η6-C6H6)(dppe)(NCCH3)]+, respectively. [Re(η6-C6H6)(NCCH3)3]+ also reacts with π-acceptors such as 2,2'-bipyridine (bipy), 1,10-phenanthroline (phen), or CO (1 atm) to give [Re(η6-C6H6)(L)(NCCH3)]+ (L = bipy or phen) and [Re(η6-C6H6)(CO)(NCCH3)2]+, respectively. The latter does not show any signs of decomposition after being exposed to an ambient atmosphere for multiple days. Additionally, [Re(η6-C6H6)(NCCH3)3]+ reacts with π-donors such as the dienes 2,3-dimethyl-1,3-butadiene (DMBD), norbornadiene (NBD), or 1,5-cyclooctadiene (COD) to give [Re(η6-C6H6)(η4-diene)(NCCH3)]+ (diene = DMBD, NBD, and COD). All three complexes are extremely stable and do not decompose during purification by preparative high-performance liquid chromatography (aqueous acidic gradient). In the presence of 18-crown-6, [Re(η6-C6H6)(NCCH3)3]+ reacts with lithium cyclopentadienyl to give the sandwich complex [Re(η5-C5H5)(η6-C6H6)]. Loss of the coordinated benzene was observed when treating [Re(η6-C6H6)(NCCH3)3]+ with diphenylacetylene (PhC≡CPh), yielding the tetra-coordinated [Re(NCCH3)(η2-PhC≡CPh)3]+.