Transmission of Asian Zika Lineage by Aedes aegypti and Ae. albopictus Mosquitoes in Florida

Viruses. 2023 Feb 2;15(2):425. doi: 10.3390/v15020425.

Abstract

The Asian lineage of Zika virus (ZIKV), a mosquito-borne pathogen originally from Africa, caused an epidemic into Brazil in 2015 and subsequently spread throughout the Americas. Local transmission in the U.S. is a public health concern, especially for Florida where the mosquito vectors Aedes aegypti and Ae. albopictus are widespread, abundant, and there is a high potential for virus introduction due to imported cases. Here we evaluate relative susceptibility to infection and transmission of Zika virus among geographic populations of Ae. aegypti and Ae. albopictus in Florida. Both species have been implicated as ZIKV vectors elsewhere, but both virus and vector genotype are known to influence transmission capacities and, hence, the risk of outbreaks. We test the hypothesis that Ae. aegypti and Ae. albopictus show geographic differences in midgut and salivary gland barriers that limit ZIKV transmission, using local populations of the two vector species recently colonized from three regions of Florida to compare their susceptibility to ZIKV infection, disseminated infection, and transmission potential. Susceptibility to infection was higher in Ae. aegypti (range 76-92%) than Ae. albopictus (range 47-54%). Aedes aegypti exhibited 33-44% higher susceptibility to infection than Ae. albopictus, with Ae. aegypti from Okeechobee, FL having 17% higher susceptibility to infection than Ae. aegypti from Miami, FL. Similarly, disseminated infection was higher in Ae. aegypti (range 87-89%) than Ae. albopictus (range 31-39%), although did not vary by region. Enhanced infection and disseminated infection in Ae. aegypti were associated with higher viral loads in mosquito samples than in Ae. albopictus. Transmission rates did not vary by species or region (range 26-47%). The results support the hypothesis that Ae. aegypti, but not Ae. albopictus, exhibited regional differences in midgut infection barriers. Our observation of higher vector competence for Ae. aegypti than Ae. albopictus, together with this species greater propensity to feed on humans, lends support to the notion that Ae. aegypti is regarded as the primary vector for ZIKV and public health concern in continental U.S.

Keywords: Zika virus infection and transmission; arbovirus emergence; invasive mosquitoes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aedes*
  • Animals
  • Disease Outbreaks
  • Florida / epidemiology
  • Humans
  • Zika Virus Infection*
  • Zika Virus* / genetics

Grants and funding

This research was funded by the Florida Department of Agriculture and Consumer Services, contract number 024378.