Synthesis and Design of Hybrid Metalloporphyrin Polymers Based on Palladium (II) and Copper (II) Cations and Axial Complexes of Pyridyl-Substituted Sn(IV)Porphyrins with Octopamine

Polymers (Basel). 2023 Feb 20;15(4):1055. doi: 10.3390/polym15041055.

Abstract

Supramolecular metalloporphyrin polymers formed by binding tetrapyrrolic macrocycle peripheral nitrogen atoms to Pd(II) cations and Sn(IV)porphyrins extra-ligands reaction centers to Cu(II) cations were obtained and identified. The structure and the formation mechanism of obtained hydrophobic Sn(IV)-porphyrin oligomers and polymers in solution were established, and their resistance to UV radiation and changes in solution temperature was studied. It was shown that the investigated polyporphyrin nanostructures are porous materials with predominance cylindrical mesopores. Density functional theory (DFT) was used to geometrically optimize the experimentally obtained supramolecular porphyrin polymers. The sizes of unit cells in porphyrin tubular structures were determined and coincided with the experimental data. The results obtained can be used to create highly porous materials for separation, storage, transportation, and controlled release of substrates of different nature, including highly volatile, explosive, and toxic gases.

Keywords: Sn(IV)porphyrin extra-complexes; highly porous materials; photoresistance; porphyrin polymers; thermal stability.