Confirmation of the Disulfide Connectivity and Strategies for Chemical Synthesis of the Four-Disulfide-Bond-Stabilized Aspergillus giganteus Antifungal Protein, AFP

J Nat Prod. 2023 Apr 28;86(4):782-790. doi: 10.1021/acs.jnatprod.2c00954. Epub 2023 Feb 27.

Abstract

Emerging fungal infections require new, more efficient antifungal agents and therapies. AFP, a protein from Aspergillus giganteus with four disulfide bonds, is a promising candidate because it selectively inhibits the growth of filamentous fungi. In this work, the reduced form of AFP was prepared using native chemical ligation. The native protein was synthesized via oxidative folding with uniform protection for cysteine thiols. AFP's biological activity depends heavily on the pattern of natural disulfide bonds. Enzymatic digestion and MS analysis provide proof for interlocking disulfide topology (abcdabcd) that was previously assumed. With this knowledge, a semi-orthogonal thiol protection method was designed. By following this strategy, out of a possible 105, only 6 disulfide isomers formed and 1 of them proved to be identical with the native protein. This approach allows the synthesis of analogs for examining structure-activity relationships and, thus, preparing AFP variants with higher antifungal activity.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antifungal Agents* / chemistry
  • Disulfides
  • Fungal Proteins* / metabolism
  • alpha-Fetoproteins

Substances

  • Antifungal Agents
  • Fungal Proteins
  • alpha-Fetoproteins
  • Disulfides

Supplementary concepts

  • Aspergillus giganteus