Probiotic Potential and Safety Assessment of Type Strains of Weissella and Periweissella Species

Microbiol Spectr. 2023 Feb 27;11(2):e0304722. doi: 10.1128/spectrum.03047-22. Online ahead of print.

Abstract

Although numerous strains belonging to the Weissella genus have been described in the last decades for their probiotic and biotechnological potential, others are known to be opportunistic pathogens of humans and animals. Here, we investigated the probiotic potential of two Weissella and four Periweissella type strains belonging to the species Weissella diestrammenae, Weissella uvarum, Periweissella beninensis, Periweissella fabalis, Periweissella fabaria, and Periweissella ghanensis by genomic and phenotypic analyses, and performed a safety assessment of these strains. Based on the results of the survival to simulated gastrointestinal transit, autoaggregation and hydrophobicity characteristics, as well as adhesion to Caco-2 cells, we showed that the P. beninensis, P. fabalis, P. fabaria, P. ghanensis, and W. uvarum type strains exhibited a high probiotic potential. The safety assessment, based on the genomic analysis, performed by searching for virulence and antibiotic resistance genes, as well as on the phenotypic evaluation, by testing hemolytic activity and antibiotic susceptibility, allowed us to identify the P. beninensis type strain as a safe potential probiotic microorganism. IMPORTANCE A comprehensive analysis of safety and functional features of six Weissella and Periweissella type strains was performed. Our data demonstrated the probiotic potential of these species, indicating the P. beninensis type strain as the best candidate based on its potential probiotic features and the safety assessment. The presence of different antimicrobial resistance profiles in the analyzed strains highlighted the need to establish cutoff values to perform a standardized safety evaluation of these species, which, in our opinion, should be mandatory on a strain-specific basis.

Keywords: Periweissella; Periweissella beninensis; Weissella; adhesion; antibiotic resistance; autoaggregation; cell adhesion; genomics; hemolysis; hydrophobicity; probiotic; safety assessment.

Grants and funding

No funding