Environmentally Stable, Robust, Adhesive, and Conductive Supramolecular Deep Eutectic Gels as Ultrasensitive Flexible Temperature Sensor

Adv Mater. 2023 May;35(21):e2300114. doi: 10.1002/adma.202300114. Epub 2023 Mar 30.

Abstract

It is essential and of great significance to impart high mechanical performance, environmental stability, and high sensitivity to emerging flexible temperature sensors. In this work, polymerizable deep eutectic solvents are designed and prepared by simply mixing N-cyanomethyl acrylamide (NCMA) containing an amide group and a cyano group in the same side chain with lithium bis(trifluoromethane) sulfonimide (LiTFSI), and obtain supramolecular deep eutectic polyNCMA/LiTFSI gels after polymerization. These supramolecular gels exhibit excellent mechanical performance (tensile strength of 12.9 MPa and fracture energy of 45.3 kJ m-2 ), strong adhesion force, high-temperature responsiveness, self-healing ability, and shape memory behavior due to the reversible reconstruction ability of amide hydrogen bonds and cyano-cyano dipole-dipole interactions in the gel network. In addition, the gels also demonstrate good environmental stability and 3D printability. To verify its application potential as a flexible temperature sensor, the polyNCMA/LiTFSI gel-based wireless temperature monitor is developed and displays outstanding thermal sensitivity (8.4%/K) over a wide detection range. The preliminary result also suggests the promising potential of PNCMA gel as a pressure sensor.

Keywords: adhesives; deep eutectic gels; dipole-dipole interactions; hydrogen bonds; temperature sensitivity.