Potential role for protein kinase D inhibitors in prostate cancer

J Mol Med (Berl). 2023 Apr;101(4):341-349. doi: 10.1007/s00109-023-02298-4. Epub 2023 Feb 27.

Abstract

Protein kinase D (PrKD), a novel serine-threonine kinase, belongs to a family of calcium calmodulin kinases that consists of three isoforms: PrKD1, PrKD2, and PrKD3. The PrKD isoforms play a major role in pathologic processes such as cardiac hypertrophy and cancer progression. The charter member of the family, PrKD1, is the most extensively studied isoform. PrKD play a dual role as both a proto-oncogene and a tumor suppressor depending on the cellular context. The duplicity of PrKD can be highlighted in advanced prostate cancer (PCa) where expression of PrKD1 is suppressed whereas the expressions of PrKD2 and PrKD3 are upregulated to aid in cancer progression. As understanding of the PrKD signaling pathways has been better elucidated, interest has been garnered in the development of PrKD inhibitors. The broad-spectrum kinase inhibitor staurosporine acts as a potent PrKD inhibitor and is the most well-known; however, several other novel and more specific PrKD inhibitors have been developed over the last two decades. While there is tremendous potential for PrKD inhibitors to be used in a clinical setting, none has progressed beyond preclinical trials due to a variety of challenges. In this review, we focus on PrKD signaling in PCa and the potential role of PrKD inhibitors therein, and explore the possible clinical outcomes based on known function and expression of PrKD isoforms at different stages of PCa.

Keywords: Cell signaling; Prostate cancer; Protein kinase D.

Publication types

  • Review

MeSH terms

  • Humans
  • Male
  • Prostatic Neoplasms*
  • Protein Isoforms
  • Protein Kinase C / metabolism
  • Protein Kinase Inhibitors*
  • Protein Serine-Threonine Kinases

Substances

  • protein kinase D
  • Protein Kinase Inhibitors
  • Protein Kinase C
  • Protein Serine-Threonine Kinases
  • Protein Isoforms