Soil organic carbon stability mediate soil phosphorus in greenhouse vegetable soil by shifting phoD-harboring bacterial communities and keystone taxa

Sci Total Environ. 2023 May 15:873:162400. doi: 10.1016/j.scitotenv.2023.162400. Epub 2023 Feb 24.

Abstract

Addition of organic amendments, such as manure and straw, to arable fields as a partial substitute for mineral phosphorus (P), are a sustainable practice in high-efficiency agricultural production. Different organic inputs may induce varied soil organic carbon (OC) stability and phoD harboring microbes, subsequently regulate P behavior, but the underlying mechanisms are poorly understood. A 11-year field experiment examined P forms by 31P-nuclear magnetic resonance (NMR), OC chemical composition by 13C NMR, and biologically-based P availability methods, phoD bacterial communities, and their co-occurrence in soils amended with chemical P fertilizer (CF), chemical P partly substituted by organic amendments including pig manure (CM), a mixture of pig manure and corn straw (CMS), and corn straw (CS), with equal P input in all treatments. Organic amendments significantly increased soil labile Pi (CaCl2-P, citrate-P, 2.91-3.26 and 1.16-1.32 times higher than CF) and Po (enzyme-P, diesters, 4.08-7.47 and 1.71-2.14 times higher than CF) contents and phosphatase activities, while significantly decreased aromaticity (AI) and recalcitrance indexes (RI) of soil C, compared with CF. The keystone genera in manured soils (Alienimomas and Streptomyces) and straw-applied soils (Janthinobacterium and Caulobacter) were significantly correlated with soil enzyme-P, microbial biomass P (MBP), diesters, and citrate-P. Soil AI and RI were significantly correlated with the phoD keystone and soil P species. It suggested that the keystone was impacted by soil OC stability and play a role in regulating P redistribution in amended soils. This study highlights how manure and straw incorporation altered soil OC stability, shaped the phoD harboring community, and enhanced soil P biological processes promoted by the keystone taxa. The partial substitution of mineral P by mixture of manure and straw is effectively promote soil P availability and beneficial for environmental sustainability.

Keywords: Greenhouse soil; Manure; Soil organic carbon; Soil phosphorus; Straw; phoD gene community.

MeSH terms

  • Animals
  • Bacteria
  • Carbon*
  • Fertilizers / analysis
  • Manure
  • Phosphorus
  • Soil Microbiology
  • Soil* / chemistry
  • Swine
  • Vegetables

Substances

  • Soil
  • Carbon
  • Phosphorus
  • Manure
  • Fertilizers