Clinical validation and assessment of feasibility of volumetric absorptive microsampling (VAMS) for monitoring of nilotinib, cabozantinib, dabrafenib, trametinib, and ruxolitinib

J Pharm Biomed Anal. 2023 May 10:228:115311. doi: 10.1016/j.jpba.2023.115311. Epub 2023 Feb 23.

Abstract

Volumetric absorptive microsampling (VAMS) has emerged as a minimally invasive alternative to conventional sampling. However, the applicability of VAMS must be investigated clinically. Therefore, the feasibility of at-home sampling was investigated for the kinase inhibitors nilotinib, cabozantinib, dabrafenib, trametinib and ruxolitinib and evaluated regarding the acceptance of at-home microsampling, sample quality of at-home VAMS and incurred sample stability. In addition, clinical validation including three different approaches for serum level predictions was performed. For this purpose, VAMS and reference serum samples were collected simultaneously. Conversion of VAMS to serum concentration was based either on a linear regression model, a hematocrit-dependent formula, or using a correction factor. During the study period 591 VAMS were collected from a total of 59 patients. The percentage of patients who agreed to perform VAMS at home ranged from 50.0 % to 84.6 % depending on the compound. 93.1 % of at-home VAMS were collected correctly. Regarding the drug stability in dried capillary blood, no stability issues were detected between on-site and at-home VAMS. Linear regression showed a strong correlation between VAMS and reference serum concentrations for nilotinib, cabozantinib, dabrafenib and ruxolitinib (r 0.9427 - 0.9674) and a moderate correlation for trametinib (r 0.5811). For clinical validation, the acceptance criteria were met for all three approaches for three of the five kinase inhibitors. Predictive performance was not improved by using individual hematocrit instead of population hematocrit and was largely independent of conversion model. In conclusion, VAMS at-home has been shown to be feasible for use in routine clinical care and serum values could be predicted based on the measured VAMS concentration for nilotinib, cabozantinib, and dabrafenib.

Keywords: Dried matrix method (DMM); Kinase inhibitor; Therapeutic drug monitoring (TDM); Volumetric absorptive microsampling (VAMS).

MeSH terms

  • Blood Specimen Collection*
  • Dried Blood Spot Testing*
  • Feasibility Studies
  • Humans

Substances

  • cabozantinib
  • trametinib
  • ruxolitinib
  • dabrafenib