Cytogenetic and Biochemical Responses of Wheat Seeds to Proton Irradiation at the Bragg Peak

Plants (Basel). 2023 Feb 13;12(4):842. doi: 10.3390/plants12040842.

Abstract

The present study aimed to evaluate the morphological, cytogenetic and biochemical changes in wheat seedlings as affected by seed exposure to a proton beam at the Bragg peak. The average energy of the proton beam was of 171 MeV at the entrance into the irradiator room while at the point of sample irradiation the beam energy was of 150 MeV, with the average value of the Linear Energy Transfer of 0.539 keV/μm and the dose rate of 0.55 Gy/min, the radiation doses being of the order of tens of Gy. Cytogenetic investigation has revealed the remarkable diminution of the mitotic index as linear dose-response curve as well as the spectacular linear increase of the aberration index. Analyzing some biometric parameters, it was found that neither dry matter nor water content of wheat seedlings was influenced by proton beam exposure. Studying the biochemical parameters related to the antioxidant defense system, we found that the irradiation caused the slight increasing tendency of peroxidase activity as well as the decreasing trend in the activity of superoxidedismutase in the seedlings grown from the irradiated seeds. The level of malonedialdehyde (MDA) and total polyphenols showed an increasing tendency in all seedling variants corresponding to irradiated seeds, compared to the control. We conclude that the irradiation clearly induced dose-response curves at the level of cytogenetic parameters together with relatively slight variation tendency of some biochemical parameters related to the antioxidant defense system while imperceptible changes could be noticed in the biometric parameters.

Keywords: Bragg peak; abiotic stress; cytogenetics; proton irradiation.