Effect of Copolymer Properties on the Phase Behavior of Ibuprofen-PLA/PLGA Mixtures

Pharmaceutics. 2023 Feb 14;15(2):645. doi: 10.3390/pharmaceutics15020645.

Abstract

Prediction of compatibility of the active pharmaceutical ingredient (API) with the polymeric carrier plays an essential role in designing drug delivery systems and estimating their long-term physical stability. A key element in deducing API-polymer compatibility is knowledge of a complete phase diagram, i.e., the solubility of crystalline API in polymer and mutual miscibility of API and polymer. In this work, the phase behavior of ibuprofen (IBU) with different grades of poly(D,L-lactide-co-glycolide) (PLGA) and polylactide (PLA), varying in composition of PLGA and molecular weight of PLGA and PLA, was investigated experimentally using calorimetry and computationally by the perturbed-chain statistical associating fluid theory (PC-SAFT) equation of state (EOS). The phase diagrams constructed based on a PC-SAFT EOS modeling optimized using the solubility data demonstrated low solubility at typical storage temperature (25 °C) and limited miscibility (i.e., presence of the amorphous-amorphous phase separation region) of IBU with all polymers studied. The ability of PC-SAFT EOS to capture the experimentally observed trends in the phase behavior of IBU-PLA/PLGA systems with respect to copolymer composition and molecular weight was thoroughly investigated and evaluated.

Keywords: API–polymer compatibility; PC-SAFT; PLA; PLGA; amorphous solid dispersion; biodegradable polymers; phase diagrams.