Catalytic Reduction of p-Nitrophenol on MnO2/Zeolite -13X Prepared with Lawsonia inermis Extract as a Stabilizing and Capping Agent

Nanomaterials (Basel). 2023 Feb 20;13(4):785. doi: 10.3390/nano13040785.

Abstract

p-nitrophenol (pNP) is a highly toxic organic compound and is considered carcinogenic and mutagenic. It is a very stable compound with high resistance to chemical or biological degradation. As a result, the elimination of this pollutant has been very challenging for many researchers. Catalytic reduction is one of the most promising techniques, if a suitable catalyst is developed. Thus, this work aims to prepare an eco-friendly catalyst via a simple and low-cost route and apply it for the conversion of the toxic p-nitrophenol (pNP) into a non-toxic p-aminophenol (pAP) that is widely used in industry. Manganese oxide was prepared in an environmentally friendly manner with the aid of Lawsonia inermis (henna) extract as a stabilizing and capping agent and loaded on the surface of 13X molecular sieve zeolite. The UV-Vis spectrum, EDS, and XRD patterns confirmed the formation of the pure MnO2 loaded on the zeolite crystalline network. The TGA analysis showed that the samples prepared by loading MnO2 on zeolite (Mn2Z, Mn3Z, and Mn4Z) lost more mass than pure MnO2 (Mn) or zeolite (Z), which is mainly moisture adsorbed on the surface. This indicates a better dispersion of MnO2 on the surface of zeolite compared to pure MnO2, and thus a higher number of active adsorption sites. SEM images and EDS confirmed the dispersion of the MnO2 on the surface of the zeolite. Results showed a very fast reduction rate, following the order Mn2Z > Mn3Z > Mn4Z > Mn > Z. With sample Mn2Z, 96% reduction of pNP was achieved in 9 min and 100% in 30 min. For Mn3Z, Mn4Z, and Mn, 98% reduction was achieved in 20 min and 100% in 30 min. Zeolite was the slowest, with only a 40% reduction in 30 min. Increasing the amount of zeolite in the synthesis mixture resulted in lower reduction efficiency. The kinetic study indicated that the reduction of p-nitrophenol on the surface of the prepared nanocomposite follows the pseudo-first-order model. The results show that the proposed nanocomposite is very effective and very promising to be commercially applied in water treatment, due to its low cost, simple synthesis procedure, and reusability.

Keywords: 13X molecular sieve; catalytic reduction; manganese oxide; nanoparticles; p-aminophenol; p-nitrophenol; zeolite.

Grants and funding

This research was funded by Deputyship for Research and Innovation, Ministry of Education of Saudi Arabia, grant number [INST163]. And The APC was funded by Deputyship for Research and Innovation, Ministry of Education of Saudi Arabia, grant number [INST163].