Composites of Montmorillonite and Titania Nanoparticles Prepared by Inverse Microemulsion Method: Physico-Chemical Characterization

Nanomaterials (Basel). 2023 Feb 10;13(4):686. doi: 10.3390/nano13040686.

Abstract

TiO2/montmorillonite composites were synthesized using inverse micellar route for the preparation of titania nanoparticles (4-6 nm diameter) in 1-hexanol and for the dispersion of one of the clay components. Two series of composites were obtained: one derived from cetyltrimethylammonium organomontmorillonite (CTA-Mt), exfoliated in 1-hexanol, and the other from sodium form of montmorillonite (Na-Mt) dispersed by formation of an inverse microemulsion in 1-hexanol. The TiO2 content ranged from 16 to 64 wt.%. The composites were characterized with X-ray diffraction, scanning/transmission electron microscopy/energy dispersive X-ray spectroscopy, thermal analysis, and N2 adsorption-desorption isotherms. The Na-Mt-derived component was shown to undergo transformation to CTA-Mt, as indicated by basal spacing of 17.5 nm, due to the interaction with the CTABr surfactant in inverse microemulsion. It was also better dispersed and intermixed with TiO2 nanoparticles. As a result, the TiO2/Na-Mt series displayed superior textural properties, with specific surface area up to 256 m2g-1 and pore volume up to 0.247 cm3g-1 compared with 208 m2g-1 and 0.231 cm3g-1, respectively, for the TiO2/CTA-Mt counterpart. Members of both series were uniformly mesoporous, with the dominant pore size around 5 nm, i.e., comparable with the dimensions of titania nanoparticles. The advantage of the adopted synthesis method is discussed in the context of other preparative procedures used for manufacturing of titania-clay composites.

Keywords: TiO2; clay; composite; inverse micelle; inverse microemulsion; mesoporosity; montmorillonite; organoclay.