Short-Wave Ultraviolet-Light-Based Disinfection of Surface Environment Using Light-Emitting Diodes: A New Approach to Prevent Health-Care-Associated Infections

Microorganisms. 2023 Feb 2;11(2):386. doi: 10.3390/microorganisms11020386.

Abstract

Ultraviolet (UV)-C irradiation is a promising method for microbial eradication on surfaces. Major developments have taken place in UV-C light-emitting diodes (LEDs) technology. In this study, we examined the suitability of UV-C LED-based surface disinfection in hospitals. We tested the efficacy of UV-C LED surface treatment on different microorganisms dried on a carrier surface or in a liquid solution. The influences of soiling, shading, surface material, radiation wavelength, microbial load and species on the disinfection performance were investigated. UV-C LED caused a reduction of >5 log10 levels of E. coli, S. aureus and C. albicans, whereas 3 log10 reduction was observed for G. stearothermophilus spores. The components of the medium led to a reduced UV-C LED efficiency compared to buffered solutions. We observed that the microbial load and the roughness of the carrier surface had a major influence on the UV-C LED disinfection efficiencies, whereas shading had no impact on inactivation. This study showed that UV-C is suitable for surface disinfection, but only under certain conditions. We showed that the main factors influencing microbial inactivation through UV-C light (e.g., intrinsic and extrinsic factors) had a similar impact when using a UV-C LED radiation source compared to a conventional UV-C lamp. However, the potential of LEDs is contributed by their adjustable wavelength and customizable geometry for the decontamination of medical devices and surfaces, and thereby their ability to overcome shading effects.

Keywords: UV-C LED irradiation; hospital acquired infections; hygiene; reprocessing medical devices; surface disinfection.

Grants and funding

This research was funded by a grant from the German Ministry of Education and Research (BMBF), grant number 03ZZ0147C.