Effect of Microstructural Evolution on the Mechanical Properties of Ni-Cr-Mo Ultra-Heavy Steel Plate

Materials (Basel). 2023 Feb 15;16(4):1607. doi: 10.3390/ma16041607.

Abstract

In this study, microstructural evolution and its effects on mechanical properties across the thickness of a 120 mm Ni-Cr-Mo industrial ultra-heavy steel plate were quantitatively investigated by means of optical microscope (OM), scanning electron microscope (SEM), transmission electron microscope (TEM) and electron back-scatter diffraction (EBSD). The results show that the martensite fraction is 65% at 10 mm and disappears at 40 mm, while granular bainite appears at 35 mm and climbs up to as high as 32% at 60 mm, with M-A constituents significantly coarsened. The strength drops with the gradual coarsening of the laths as well as decreased martensite fraction from the surface to the centre. The toughness is mainly affected by the block size and the morphology and quantity of M-A constituents. This study established a multivariate function between the microstructure and toughness (50% fibre area transition temperature, FATT50) with careful consideration of the influence of effective grain size (EGS) and M-A constituent size distribution.

Keywords: EGS; M-A constituent; microstructural evolution; multivariate function; ultra-heavy steel plate.