Improving the Dispersibility of TiO2 in the Colloidal System Using Trifunctional Spherosilicates

Materials (Basel). 2023 Feb 8;16(4):1442. doi: 10.3390/ma16041442.

Abstract

Titanium dioxide is a commonly used ingredient in cosmetics acting as a thickening agent and inorganic UV filter. However, TiO2 is difficult to disperse, which causes problems in spreading the formulations. The solution to this problem is to modify the titanium dioxide surface to change its properties by creation of the new type of hybrid inorganic-organic UV filter. Therefore, this study aimed to functionalize titanium dioxide with organosilicon compounds and determine how this modification will affect the dispersibility of TiO2 in the colloidal system and the stability of emulsions. First, the functionalized octaspherosilicates were obtained and characterized. Next, the synthesized compounds were applied as modifiers for titanium dioxide and were analyzed by FT-IR, UV-Vis, and laser diffraction. Furthermore, the hydrophilic-hydrophobic character was assessed by measuring the contact angle. The new materials were introduced into emulsions and the formulations were analyzed in terms of particle size distribution and stability by multiple light scattering. It was found that the modification of titanium dioxide with spherosilicates significantly improved both the stability of emulsion and the dispersibility of novel materials in the colloidal system compared to nonmodified TiO2. The covalent binding of the modifier with the titanium dioxide had an impact on the stability of the emulsion.

Keywords: POSS; UV filter; emulsion; silsesquioxanes; surface modification; titanium(IV) oxide.