The Use of Toothpastes Containing Different Formulations of Fluoride and Bioglass on Bleached Enamel

Materials (Basel). 2023 Feb 6;16(4):1368. doi: 10.3390/ma16041368.

Abstract

To investigate the application of toothpaste either containing calcium sodium phospho-silicate bioglass (NovaMin) or calcium fluorosilicate bioglass (BioMinF) on the surface mineral composition and morphology of enamel after bleaching procedure. Methods: Thirty extracted noncarious human teeth were allocated into five groups (n = 6). Group 1: Bleaching using 40% hydrogen peroxide (HP) and fluoridated toothpaste containing bioactive glass (1450 ppm fluoride). Group 2: Bleaching using 40%HP and toothpaste containing calcium fluorosilicate bioglass (540 ppm fluoride). Group 3: Bleaching using 40%HP and fluoridated toothpaste (1450 ppm fluoride). Group 4: Bleaching alone using 40%HP. Group 5: Negative control with distilled water alone. The surface morphology was evaluated using Scanning Electron Microscope (SEM) and Scanning Probe Microscope (SPM). The concentration of elements as atomic percentages were determined by X-ray Photoelectron Spectroscopy (XPS) and Energy-Dispersive X-ray Spectroscopy (EDS). Results: This laboratory-based study reported that SPM and SEM detected minor changes on the surfaces of all toothpaste-treated enamel samples (Groups 1-3) after 45 days. Bioactive glass deposits were observed on enamel surfaces in Groups 1 and 2, whilst the bleaching-alone samples (Group 4) had rough enamel surfaces. XPS reported that toothpaste containing calcium fluorosilicate bioglass (Group 2) had a high atomic% of calcium and phosphate, whilst silicon values were high in the toothpaste containing bioactive glass and 1450 ppm fluoride (Group 1) after bleaching procedure when compared to other groups (p < 0.05). In addition, EDS detected the highest %F in Groups 1, 2 and 5. Conclusions: Within the limitations of this laboratory-based study, there was no significant decrease in the Ca%, P% values and surface properties of enamel after the bleaching procedure following the use of different formulations of toothpastes for a period of 45 days. However, the Ca% and P% values were significantly high for the toothpaste containing calcium fluorosilicate bioglass (BioMinF) on the bleached enamel. Clinical relevance: The bleaching process can provide optimum aesthetic outcomes, but the effect of peroxides on hard tissues is still in question. Toothpastes containing different formulations of fluoride and bioactive glass might have the potential to prevent mineral loss on bleached enamel. However, further laboratory-based studies and controlled double-blind randomised clinical trials are required to interpret the effects of toothpastes with different fluoride and bioactive glass formulations on enamel surfaces following bleaching procedures.

Keywords: bioactive glass; bleaching; enamel; mineral content; remineralisation.

Grants and funding

This study was supported by Ege University Scientific Research Fund (TDH-2019-20662).