Transcriptome Dynamic Analysis Reveals New Candidate Genes Associated with Resistance to Fusarium Head Blight in Two Chinese Contrasting Wheat Genotypes

Int J Mol Sci. 2023 Feb 20;24(4):4222. doi: 10.3390/ijms24044222.

Abstract

In recent years, Fusarium head blight (FHB) has developed into a global disease that seriously affects the yield and quality of wheat. Effective measures to solve this problem include exploring disease-resistant genes and breeding disease-resistant varieties. In this study, we conducted a comparative transcriptome analysis to identify the important genes that are differentially expressed in FHB medium-resistant (Nankang 1) and FHB medium-susceptible (Shannong 102) wheat varieties for various periods after Fusarium graminearum infection using RNA-seq technology. In total, 96,628 differentially expressed genes (DEGs) were identified, 42,767 from Shannong 102 and 53,861 from Nankang 1 (FDR < 0.05 and |log2FC| > 1). Of these, 5754 and 6841 genes were found to be shared among the three time points in Shannong 102 and Nankang 1, respectively. After inoculation for 48 h, the number of upregulated genes in Nankang 1 was significantly lower than that of Shannong 102, but at 96 h, the number of DEGs in Nankang 1 was higher than that in Shannong 102. This indicated that Shannong 102 and Nankang 1 had different defensive responses to F. graminearum in the early stages of infection. By comparing the DEGs, there were 2282 genes shared at the three time points between the two strains. GO and KEGG analyses of these DEGs showed that the following pathways were associated with disease resistance genes: response to stimulus pathway in GO, glutathione metabolism, phenylpropanoid biosynthesis, plant hormone signal transduction, and plant-pathogen interaction in KEGG. Among them, 16 upregulated genes were identified in the plant-pathogen interaction pathway. There were five upregulated genes, TraesCS5A02G439700, TraesCS5B02G442900, TraesCS5B02G443300, TraesCS5B02G443400, and TraesCS5D02G446900, with significantly higher expression levels in Nankang 1 than in Shannong 102, and these genes may have an important role in regulating the resistance of Nankang 1 to F. graminearum infection. The PR proteins they encode are PR protein 1-9, PR protein 1-6, PR protein 1-7, PR protein 1-7, and PR protein 1-like. In addition, the number of DEGs in Nankang 1 was higher than that in Shannong 102 on almost all chromosomes, except chromosomes 1A and 3D, but especially on chromosomes 6B, 4B, 3B, and 5A. These results indicate that gene expression and the genetic background must be considered for FHB resistance in wheat breeding.

Keywords: Fusarium head blight; differentially expressed genes; plant defense; transcriptome; wheat.

MeSH terms

  • Disease Resistance / genetics
  • Fusarium* / genetics
  • Gene Expression Profiling
  • Genotype
  • Plant Breeding
  • Plant Diseases / genetics
  • Transcriptome*
  • Triticum / genetics