Nanoparticle-Based Techniques for Bladder Cancer Imaging: A Review

Int J Mol Sci. 2023 Feb 14;24(4):3812. doi: 10.3390/ijms24043812.

Abstract

Bladder cancer is very common in humans and is often characterized by recurrences, compromising the patient's quality of life with a substantial social and economic impact. Both the diagnosis and treatment of bladder cancer are problematic due to the exceptionally impermeable barrier formed by the urothelium lining the bladder; this hinders the penetration of molecules via intravesical instillation while making it difficult to precisely label the tumor tissue for surgical resection or pharmacologic treatment. Nanotechnology has been envisaged as an opportunity to improve both the diagnostic and therapeutic approaches for bladder cancer since the nanoconstructs can cross the urothelial barrier and may be functionalized for active targeting, loaded with therapeutic agents, and visualized by different imaging techniques. In this article, we offer a selection of recent experimental applications of nanoparticle-based imaging techniques, with the aim of providing an easy and rapid technical guide for the development of nanoconstructs to specifically detect bladder cancer cells. Most of these applications are based on the well-established fluorescence imaging and magnetic resonance imaging currently used in the medical field and gave positive results on bladder cancer models in vivo, thus opening promising perspectives for the translation of preclinical results to the clinical practice.

Keywords: bladder cancer; fluorescent imaging; magnetic resonance imaging; nanotechnology; optical imaging; scanning laser fluorescent microscopy; urothelium.

Publication types

  • Review

MeSH terms

  • Administration, Intravesical
  • Humans
  • Nanoparticles*
  • Quality of Life
  • Urinary Bladder / pathology
  • Urinary Bladder Neoplasms* / pathology
  • Urothelium / pathology

Grants and funding

This research received no external funding.