Characterizations and the Mechanism Underlying Cryoprotective Activity of Peptides from Enzymatic Hydrolysates of Pseudosciaena crocea

Foods. 2023 Feb 18;12(4):875. doi: 10.3390/foods12040875.

Abstract

Antifreeze peptides are a class of small molecule protein hydrolysates that protect frozen products from cold damage under freezing or subcooling conditions. In this study, three different Pseudosciaena crocea (P. crocea) peptides were from pepsin, trypsin, and neutral protease enzymatic hydrolysis. It aimed to elect the P. crocea peptides with better activity through molecular weight, antioxidant activity, and amino acid analysis, as well as to compare the cryoprotective effects with a commercial cryoprotectant. The results showed that the untreated fillets were prone to be oxidized, and the water-holding capacity after freeze-thaw cycle decreased. However, the treatment of the trypsin hydrolysate of P. crocea protein significantly promoted the water-holding capacity level and reduced the loss of Ca2+-ATP enzyme activity and the structural integrity damage of myofibrillar protein in surimi. Moreover, compared with 4% sucrose-added fillets, trypsin hydrolysate treatment enhanced the umami of frozen fillets and reduced the unnecessary sweetness. Therefore, the trypsin hydrolysate of P. crocea protein could be used as a natural cryoprotectant for aquatic products. Hence, this study provides technical support for its use as a food additive to improve the quality of aquatic products after thawing and provides a theoretical basis and experimental foundation for the in-depth research and application of antifreeze peptides.

Keywords: antifreeze peptides; enzymatic hydrolysis; freeze-thaw cycle; protein oxidation.