Proteomic Analysis of Pecan (Carya illinoinensis) Nut Development

Foods. 2023 Feb 17;12(4):866. doi: 10.3390/foods12040866.

Abstract

Pecan (Carya illinoinensis) nuts are an economically valuable crop native to the United States and Mexico. A proteomic summary from two pecan cultivars at multiple time points was used to compare protein accumulation during pecan kernel development. Patterns of soluble protein accumulation were elucidated using qualitative gel-free and label-free mass-spectrometric proteomic analyses and quantitative (label-free) 2-D gel electrophoresis. Two-dimensional (2-D) gel electrophoresis distinguished a total of 1267 protein spots and shotgun proteomics identified 556 proteins. Rapid overall protein accumulation occurred in mid-September during the transition to the dough stage as the cotyledons enlarge within the kernel. Pecan allergens Car i 1 and Car i 2 were first observed to accumulate during the dough stage in late September. While overall protein accumulation increased, the presence of histones diminished during development. Twelve protein spots accumulated differentially based on 2-D gel analysis in the weeklong interval between the dough stage and the transition into a mature kernel, while eleven protein spots were differentially accumulated between the two cultivars. These results provide a foundation for more focused proteomic analyses of pecans that may be used in the future to identify proteins that are important for desirable traits, such as reduced allergen content, improved polyphenol or lipid content, increased tolerance to salinity, biotic stress, seed hardiness, and seed viability.

Keywords: 2D-gel; allergen; mass spectrometry; pecan; proteomics; seed development.

Grants and funding

This research was supported by USDA NIFA SCRI-2016-51181-25408 (J.J.R. and C.P.M.), and with funds from the USDA-ARS to C.P.M. (CRIS project 6054-43440-046-00D), and by an ARS Research Participation Program administered by the Oak Ridge Institute for Science and Education (ORISE) through an interagency agreement between the U.S. Department of Energy (DOE) (DE-SC0014664) and USDA. ORISE is managed by ORAU under DOE contract number DE-SC0014664. All opinions expressed in this paper are the author’s and do not necessarily reflect the policies and views of USDA, ARS, DOE, or ORAU/ORISE. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the USDA. The USDA is an equal opportunity provider and employer.