CXCR2 Antagonist RIST4721 Acts as a Potent Chemotaxis Inhibitor of Mature Neutrophils Derived from Ex Vivo-Cultured Mouse Bone Marrow

Biomedicines. 2023 Feb 7;11(2):479. doi: 10.3390/biomedicines11020479.

Abstract

Neutrophils act as critical mediators of innate immunity, which depends on their rapid responses to chemokines followed by their migration towards sites of infection during chemotaxis. Chemokine receptors expressed on the surface of neutrophils mediate chemotaxis by activating contractile machinery as the cells escape from capillary beds and then attack pathogens. Neutrophils also contribute to inflammatory responses, which support pathogen destruction but can lead to acute and chronic inflammatory disorders. CXCR2, a G-protein-coupled chemokine receptor expressed on both myeloid and epithelial cells, is well-characterized for its capacities to bind multiple chemokines, including interleukin-8 and growth-related oncogene alpha in humans or keratinocyte chemokine (KC) in mice. Here we show that a small molecule CXCR2 antagonist termed RIST4721 can effectively inhibit KC-stimulated chemotaxis by neutrophils derived from ex vivo-cultured mouse bone marrow in a potent and dose-dependent manner. Antagonistic properties of RIST4721 are thoroughly characterized, including the maximal, half-maximal and minimum concentrations required to inhibit chemotaxis. Importantly, RIST4721-treated neutrophils exhibit robust phagocytosis and reactive oxygen species production, confirming drug specificity to chemotaxis inhibition. Together our data indicate that RIST4721 acts to inhibit inflammation mediated and potentiated by neutrophils and therefore promises to facilitate treatment of a host of inflammatory conditions.

Keywords: CXCR2 antagonist; chemotaxis; inflammatory disease; neutrophil; phagocytosis; respiratory burst.