Molecular Rapid Diagnostics Improve Time to Effective Therapy and Survival in Patients with Vancomycin-Resistant Enterococcus Bloodstream Infections

Antibiotics (Basel). 2023 Jan 19;12(2):210. doi: 10.3390/antibiotics12020210.

Abstract

Delays in appropriate antibiotic therapy are a key determinant for deleterious outcomes among patients with vancomycin-resistant Enterococcus (VRE) bloodstream infections (BSIs). This was a multi-center pre/post-implementation study, assessing the impact of a molecular rapid diagnostic test (Verigene® GP-BC, Luminex Corporation, Northbrook, IL, USA) on outcomes of adult patients with VRE BSIs. The primary outcome was time to optimal therapy (TOT). Multivariable logistic and Cox proportional hazard regression models were used to determine the independent associations of post-implementation, TOT, early vs. delayed therapy, and mortality. A total of 104 patients with VRE BSIs were included: 50 and 54 in the pre- and post-implementation periods, respectively. The post- vs. pre-implementation group was associated with a 1.8-fold faster rate to optimized therapy (adjusted risk ratio, 1.841 [95% CI 1.234-2.746]), 6-fold higher likelihood to receive early effective therapy (<24 h, adjusted odds ratio, 6.031 [2.526-14.401]), and a 67% lower hazards for 30-day in-hospital mortality (adjusted hazard ratio, 0.322 [0.124-1.831]), after adjusting for age, sex, and severity scores. Inversely, delayed therapy was associated with a 10-fold higher risk of in-hospital mortality (aOR 10.488, [2.497-44.050]). Reduced TOT and in-hospital mortality were also observed in subgroups of immunosuppressed patients in post-implementation. These findings demonstrate that the addition of molecular rapid diagnostic tests (mRDT) to clinical microbiology and antimicrobial stewardship practices are associated with a clinically significant reduction in TOT, which is associated with lower mortality for patients with VRE BSIs, underscoring the importance of mRDTs in the management of VRE infections.

Keywords: antibiotic resistance; bloodstream infection; rapid diagnostics.