Inside the Mechanism of Action of Three Pyrazole Derivatives in Human Platelets and Endothelial Cells

Antioxidants (Basel). 2023 Jan 17;12(2):216. doi: 10.3390/antiox12020216.

Abstract

In the effort to obtain multitarget compound interfering with inflammation, oxidative stress, and tumorigenesis, we synthesized a small library of pyrazole compounds, selecting 4a, 4f, and 4g as the most noteworthy being IC50 against platelet ROS production induced by thrombin of about 10 µM. The in vitro antioxidant potential of the three molecules was evaluated, and since they show a remarkable antioxidative activity, their effect on several parameter indicative of oxidative status and on the efficiency of the aerobic metabolism was tested. The three molecules strongly inhibit superoxide anion production, lipid peroxidation, NADPH oxidase activity and almost restore the oxidative phosphorylation efficiency in thrombin-stimulated platelet, demonstrating a protective effect against oxidative stress. This effect was confirmed in endothelial cell in which 4a, 4f, and 4g show an interesting inhibition activity on H2O2-stimulated EA.hy926 cells. At last, antiproliferative activity of 4a, 4f, and 4g was submitted to a large screening at the NCI. The molecules show interesting anticancer activity, among them the most remarkable is 4g able to strongly inhibit the proliferation of both solid tumor and leukemia cells lines. In conclusion, all the three newly synthetized pyrazoles show remarkable antioxidant and antiproliferative effect worthy of further study.

Keywords: antiproliferative activity; endothelial cells; human platelets; inflammation; oxidative phosphorylation; oxidative stress; pyrazole.

Grants and funding

This work was supported by the Genoa University (Fondo di Ricerca di Ateneo 2021), Italy.