Universal Breakdown of Kibble-Zurek Scaling in Fast Quenches across a Phase Transition

Phys Rev Lett. 2023 Feb 10;130(6):060402. doi: 10.1103/PhysRevLett.130.060402.

Abstract

The crossing of a continuous phase transition gives rise to the formation of topological defects described by the Kibble-Zurek mechanism (KZM) in the limit of slow quenches. The KZM predicts a universal power-law scaling of the defect density as a function of the quench time. We focus on the deviations from KZM experimentally observed in rapid quenches and establish their universality. While KZM scaling holds below a critical quench rate, for faster quenches the defect density and the freeze-out time become independent of the quench rate and exhibit a universal power-law scaling with the final value of the control parameter. These predictions are verified in several paradigmatic scenarios in both the classical and quantum domains.