First Report of Bacterial Leaf Spot on Spinach (Spinacia oleracea) Caused by Pseudomonas sp. in South Carolina

Plant Dis. 2023 Feb 23. doi: 10.1094/PDIS-05-22-1139-PDN. Online ahead of print.

Abstract

A large grower of Brassica leafy greens and spinach in South Carolina observed a severe outbreak of leaf spot on 150 hectares of spinach (Spinacia oleracea) in Orangeburg County, SC in 2013. The entire field was lost due to the outbreak. Symptoms appeared on 8-week old plants as tan to white necrotic spots with black centers, water-soaking and no discernable chlorotic borders. Lesions varied from 2 mm to 1 cm in diameter and often coalesced to cover >50% of the leaves. Symptomatic spinach plants cv. Vancouver were collected in 2013 from the field. Bacterial streaming was evident from the border of necrotic lesions under magnification. Lesion border regions were excised, surface-disinfested with 0.5% NaOCl, macerated in sterilized distilled water and streaked onto nutrient agar (NA) and Pseudomonas Agar F (PAF). Bacterial growth was observed on NA and PAF; several single colonies were selected and re-streaked onto PAF. Colonies fluoresced blue under UV light after 48 h at 28oC. Two of the strains were subjected to 16S rRNA sequencing (GenBank accessions OM983506 and OM983507) and Fatty Acid Methyl Ester (FAME) analysis (MIDI LABS, Newark, DE). FAME results had a best similarity index (0.788) to Pseudomonas cichorii/viridiflava. The 16S sequences were queried to Pseudomonas type-strains in GenBank resulting in best matches: P. ovata (99.23% identity with 99% coverage) and P. maditerranea (99.04% identity with 100% coverage). Additionally, sequences had 97.33% identity with 100% coverage as a P. cichorii type strain, and only 96.86% identity with 97% coverage as a P. viridiflava type strain. These two strains were tested for pathogenicity on the spinach cv. Vancouver. Bacteria were grown on PAF for 48 h, and a bacterial suspension was prepared with sterile distilled water with the addition of 0.001% Latron (Plant Health Technologies, Boise, ID) and adjusted to an optical density of 0.4 at OD600. Six-week-old plants (eight plants) were sprayed with the bacterial suspension to runoff, placed at 100% relative humidity for 72 h, and then put in a growth chamber at 25oC with a 12 h diurnal light cycle for 10 days. Eight plants of 'Vancouver' were sprayed with water and 0.001% Latron as controls. Both strains were pathogenic on 'Vancouver' and caused symptoms similar to those observed in the field. Symptoms were not observed on negative controls. The same bacterial colonies were recovered from the lesions on inoculated plants, fulfilling Koch's postulates. Comparative rep-PCR analysis using the BOXA1R primer (Versalovic et al. 1994) showed both strains had identical DNA-banding profiles. All identification methods used indicate that this is a different Pseudomonas species from the one reported on spinach in California by Koike et al (2002). The top producers of spinach in SC stopped large-scale production in 2014 as a result of this pathogen. In 2020, due to inability of processors to obtain sufficient quantities of spinach, SC growers again planted the crop. Growers experienced yield losses due to similar symptoms on the crop. BOX-PCR of isolated strains of bacteria from these plants showed a DNA banding pattern similar to the 2013 strains.

Keywords: Spinach; leaf blight; phytobacteria.