Scanning electron microscopy of human islet cilia

bioRxiv [Preprint]. 2023 Feb 15:2023.02.15.528685. doi: 10.1101/2023.02.15.528685.

Abstract

Human islet primary cilia are vital glucose-regulating organelles whose structure remains uncharacterized. Scanning electron microscopy (SEM) is a useful technique for studying the surface morphology of membrane projections like primary cilia, but conventional sample preparation does not reveal the sub-membrane axonemal structure which holds key implications for cilia function. To overcome this challenge, we combined SEM with membrane-extraction techniques to examine cilia in native human islets. Our data show well-preserved cilia subdomains which demonstrate both expected and unexpected ultrastructural motifs. Morphometric features were quantified when possible, including axonemal length and diameter, microtubule conformations and chirality. We further describe a novel ciliary ring, a structure that may be a specialization in human islets. Key findings are correlated with fluorescence microscopy and interpreted in the context of cilia function as a cellular sensor and communications locus in pancreatic islets.

Publication types

  • Preprint