Comparison of human amniotic membrane and collagen nerve wraps around sciatic nerve reverse autografts in a rat model

Biomater Biosyst. 2022 Apr 7:6:100048. doi: 10.1016/j.bbiosy.2022.100048. eCollection 2022 Jun.

Abstract

Human amniotic membrane (hAM) and collagen nerve wraps are biomaterials that have been investigated as therapies for improving outcomes of peripheral nerve regeneration; however, their efficacy has not been compared. The purpose of this study is to compare the efficacy of collagen and human amniotic membrane nerve wraps in a rodent sciatic nerve reverse autograft model. Lewis rats (n = 29) underwent sciatic nerve injury and repair in which a 10-mm gap was bridged with reverse autograft combined with either no nerve wrap (control), collagen nerve wrap or hAM nerve wrap. Behavioral analyses were performed at baseline and 4, 8 and 12 weeks. Electrophysiological studies were conducted at 8, 10 and 12 weeks. Additional outcomes assessed included gastrocnemius muscle weights, nerve adhesions, axonal regeneration and scarring at 12 weeks. Application of both collagen and hAM nerve wraps resulted in improvement of functional and histologic outcomes when compared with controls, with a greater magnitude of improvement for the experimental group treated with hAM nerve wraps. hAM-treated animals had significantly higher numbers of axons compared to control animals (p < 0.05) and significantly less perineural fibrosis than both control and collagen treated nerves (p < 0.05). The ratio of experimental to control gastrocnemius weights was significantly greater in hAM compared to control samples (p < 0.05). We conclude that hAM nerve wraps are a promising biomaterial that is effective for improving outcomes of peripheral nerve regeneration, resulting in superior nerve regeneration and functional recovery compared to collagen nerve wraps and controls.

Keywords: Amniotic membrane; Axonal regeneration; Collagen; Fibrosis; Functional recovery; Nerve autograft; Peripheral nerve injury; Regeneration.