Establishment and Characterization of Patient-Derived Xenograft Model of Non-Small-Cell Lung Cancer Derived from Malignant Pleural Effusions

Cancer Manag Res. 2023 Feb 17:15:165-174. doi: 10.2147/CMAR.S389339. eCollection 2023.

Abstract

Purpose: Non-small-cell lung cancer (NSCLC) comprises approximately 80% of all lung malignancies. The 5-year survival rate of patients with advanced lung cancer who lost their chances of surgery is approximately 15%. Suitable animal models are important in screening individualized treatment plans for patients with lung cancer, evaluating the pre-clinical efficacy of new drugs, and conducting basic research.

Patients and methods: In this study, we collected malignant pleural effusion (MPE) samples from 31 patients with NSCLC, successfully constructed 11 NSCLC patient-derived xenografts (PDXs), and analyzed the factors affecting their successful establishment. Primary PDX tumors were characterized using histological analysis, immunohistochemistry, short tandem repeat (STR) profiling, and cytogenetic analysis.

Results: The PDXs preserved the histopathology and protein expression pattern of parental tumors. STR analysis revealed the PDX tissue and a tumor tissue of the same individual origin. Statistical analysis showed that the survival time of patients reflected the malignant degree of MPEs to a certain extent, thus affecting the establishment of PDXs. However, the age, gender, and clinical and biochemical indicators of the patients did not affect the establishment of PDX models.

Conclusion: These data suggest that the established NSCLC PDXs preserved the molecular characteristics of primary lung cancer and can serve as a new tool to elucidate the pathogenesis of tumors, explore new treatment methods, and conduct the research and development of new drugs for tumors.

Keywords: PDX; cytogenetic analysis; short tandem repeat profiling; survival time; translational model.