Influence of Disorder on the Bad Metal Behavior in Polar Amalgams

Inorg Chem. 2023 Mar 6;62(9):3965-3975. doi: 10.1021/acs.inorgchem.2c04430. Epub 2023 Feb 23.

Abstract

The two new ternary amalgams K1-xRbxHg11 [x = 0.472(7)] and Cs3-xCaxHg20 [x = 0.20(3)] represent two different examples of how to create ternary compounds from binaries by statistical atom substitution. K1-xRbxHg11 is a Vegard-type mixed crystal of the isostructural binaries KHg11 and RbHg11 [cubic, BaHg11 structure type, space group Pmm, a = 9.69143(3) Å, Rietveld refinement], whereas Cs3-xCaxHg20 is a substitution variant of the Rb3Hg20 structure type [cubic, space group Pmn, a = 10.89553(14) Å, Rietveld refinement] for which a fully substituted isostructural binary Ca phase is unknown. In K1-xRbxHg11, the valence electron concentration (VEC) is not changed by the substitution, whereas in Cs3-xCaxHg20, the VEC increases with the Ca content. Amalgams of electropositive metals form polar metal bonds and show "bad metal" properties. By thermal analysis, magnetic susceptibility and resistivity measurements, and density functional theory calculations of the electronic structures, we investigate the effect of the structural disorder introduced by creating mixed-atom occupation on the physical properties of the two new polar amalgam systems.