Enhanced optoelectronic reservoir computation using semiconductor laser with double delay feedbacks

Appl Opt. 2023 Jan 20;62(3):620-626. doi: 10.1364/AO.477362.

Abstract

We numerically explored the enhanced performance and physical mechanism of semiconductor laser (SL) based reservoir computation (RC) with double optoelectronic feedback (DOEF). One-step and multistep Santa Fe time series predictions were used as standard test benchmarks in this work. We found that in the optimized parameter region the normalized mean square error (NMSE) of an SL-based RC under DOEF is smaller than an SL-based RC with single optoelectronic feedback (SOEF). In addition, the performance improvement is more obvious for multistep prediction, which is particularly suitable for more complex tasks that requires a higher memory capability (MC). The enriched node states (optical intensity of the virtual nodes for each sample) and the enhanced MC of the proposed DOEF were verified by a comparison to SOEF under the optimized feedback strength. The influence of the feedback strength and the delay difference on the NMSE and the MC was also investigated. Our study should be helpful in the design of a high-performance optoelectronic RC based on an SL.