Construction of a nano dispersed Cr/Fe-polycrystalline sensor via high-energy mechanochemistry for simultaneous electrochemical determination of dopamine and uric acid

Mikrochim Acta. 2023 Feb 23;190(3):101. doi: 10.1007/s00604-023-05688-0.

Abstract

A bimetallic polycrystalline sensor (Cr/Fe-SNCM) having nanosized and high dispersion was designed and used for the electrochemical simultaneous determination of dopamine (DA) and uric acid (UA). Catalytic nanosized Cr/Fe were highly anchored on N/S/O-contained porous carbon with high dispersion and polycrystalline Cr/Fe via energetic mechanochemical method and high-temperature carbonization. The obtained Cr/Fe-SNCM exhibited high graphitized carbon supporter and endowed high electron transport and signal output for the whole sensor. Moreover, highly dispersed Cr/Fe sites and the polycrystalline form (metal-N/S/O) efficiently enhanced the catalytic reaction, leading to a limits of detection (based on the 3σ/m criterion) of 25.8 and 22.5 nM for DA and UA, respectively. This is 1-2 orders of magnitude lower than many state-of-the-art reported sensors. The Cr/Fe-SNCM1.0 sensor exhibited wide working range (0.1 to 10.0 μM), high recovery (96-103%) and low relative standard deviation (RSD = 3.2-4.7%) for DA and UA in real serum samples, possessing high significance for practical large-scale applications.

Keywords: Differential pulse voltammetry; Dopamine; Electroanalytical detection; Mechanochemistry; Polycrystalline structure; Simultaneous determination; Uric acid.