Bayesian penalized likelihood PET reconstruction impact on quantitative metrics in diffuse large B-cell lymphoma

Medicine (Baltimore). 2023 Feb 10;102(6):e32665. doi: 10.1097/MD.0000000000032665.

Abstract

Evaluate the quantitative, subjective (Deauville score [DS]) and reader agreement differences between standard ordered subset expectation maximization (OSEM) and Bayesian penalized likelihood (BPL) positron emission tomography (PET) reconstruction methods. A retrospective review of 104 F-18 fluorodeoxyglucose PET/computed tomography (CT) exams among 52 patients with diffuse large B-cell lymphoma. An unblinded radiologist moderator reviewed both BPL and OSEM PET/CT exams. Four blinded radiologists then reviewed the annotated cases to provide a visual DS for each annotated lesion. Significant (P < .001) differences in BPL and OSEM PET methods were identified with greater standard uptake value (SUV) maximum and SUV mean for BPL. The DS was altered in 25% of cases when BPL and OSEM were reviewed by the same radiologist. Interobserver DS agreement was higher for OSEM (>1 cm lesion = 0.89 and ≤1 cm lesion = 0.84) compared to BPL (>1 cm lesion = 0.85 and ≤1 cm lesion = 0.81). Among the 4 readers, average intraobserver visual DS agreement between OSEM and BPL was 0.67 for lesions >1cm and 0.4 for lesions ≤1 cm. F-18 Fluorodeoxyglucose PET/CT of diffuse large B-cell lymphoma reconstructed with BPL has higher SUV values, altered DSs and reader agreement when compared to OSEM. This report finds volumetric PET measurements such as metabolic tumor volume to be similar between BPL and OSEM PET reconstructions. Efforts such as adoption of European Association Research Ltd accreditation should be made to harmonize PET data with an aim at balancing the need for harmonization and sensitivity for lesion detection.

MeSH terms

  • Algorithms
  • Bayes Theorem
  • Benchmarking
  • Fluorodeoxyglucose F18
  • Humans
  • Image Processing, Computer-Assisted / methods
  • Lymphoma, Large B-Cell, Diffuse* / diagnostic imaging
  • Positron Emission Tomography Computed Tomography*
  • Positron-Emission Tomography / methods

Substances

  • Fluorodeoxyglucose F18