Green synthesis of copper oxide nanoparticles using Ephedra Alata plant extract and a study of their antifungal, antibacterial activity and photocatalytic performance under sunlight

Heliyon. 2023 Feb 4;9(2):e13484. doi: 10.1016/j.heliyon.2023.e13484. eCollection 2023 Feb.

Abstract

In the present work, copper oxide (CuO NPs) was synthesized by an eco-friendly, simple, low-cost, and economical synthesis method using Ephedra Alata aqueous plant extract as a reducing and capping agent. The biosynthesized CuO-NPs were compared with chemically obtained CuO-NPs to investigate the effect of the preparation method on the structural, optical, morphological, antibacterial, antifungal, and photocatalytic properties under solar irradiation. The CuO NPs were characterized using X-ray diffraction (XRD), UV-VIS spectroscopy, Fourier transform infrared spectrometer (FTIR) analysis, and field emission scanning electron microscopy with energy dispersive X-ray spectroscopy (FESEM-EDX). The photocatalytic activities of biosynthetic CuO-NPs and chemically prepared CuO-NPs were studied using methylene blue upon exposure to solar irradiation. The results showed that the biosynthesized CuO photocatalyst was more efficient than the chemically synthesized CuO-NPs for Methylene Blue (MB) degradation under solar irradiation, with MB degradation rates of 93.4% and 80.2%, respectively. In addition, antibacterial and antifungal activities were evaluated. The disk diffusion technique was used to test the biosynthesized CuO-NPs against gram-negative bacteria, Staphylococcus aureus and Bacillus subtilis, as well as C. Albicans and S. cerevisiae. The biosynthesized CuO-NPs showed efficient antibacterial and antifungal activity. The obtained results revealed that the biosynthesized CuO-NPs can play a vital role in the destruction of pathogenic bacteria, the degradation of dyes, and the activity of antifungal agents in the bioremediation of industrial and domestic waste.

Keywords: Antibacterial; Antifungal activity; Biosynthesis; CuO-NPs; Ephedra Alata; Photocatalytic.