Effects of partially replacing dietary corn with sugars in a dual-flow continuous culture system on the ruminal microbiome

Transl Anim Sci. 2023 Jan 24;7(1):txad011. doi: 10.1093/tas/txad011. eCollection 2023 Jan.

Abstract

The objective of this study was to evaluate the effects of feeding sugars as a replacement for starch on the ruminal microbiome using a dual-flow continuous culture system. Four periods of 10 days each were conducted with 8 fermenters in a 4 × 4 replicated Latin square design. Treatments included: 1) control with corn-CON, 2) molasses-MOL, 3) untreated condensed whey permeate-CWP, and 4) CWP treated with a caustic agent-TCWP as a partial substitute for corn. Sugars were defined as the water-soluble carbohydrates (WSC) concentration. Diets were formulated by replacing 4% of the diet DM in the form of starch from corn with the sugars in byproducts. Microbial samples for DNA analysis were collected from the solid and liquid effluent containers at 3, 6, and 9 h after feeding. Bacterial community composition was analyzed with sequencing the V4 region of the 16S rRNA gene using Illumina MiSeq platform. Data were analyzed with R 4.1.3 packages vegan, lmer, and ggplot to determine the effects of treatment on the relative abundance of taxa in the solid and liquid fractions, as well as the correlation of Acetate: Propionate ratio and pH to taxa relative abundance. Treatments did not affect alpha or beta diversity. At the phylum level the relative abundance of Proteobacteria was increased in CON compared to sugars in the solid fraction. In the liquid fraction, Firmicutes had greater relative abundance in sugar treatments while Bacteroidota and Spirochaetota were present in lower relative abundance in CWP. For solid and liquid samples, the family Lachnospiraceae had greater relative abundance in sugar treatments compared to CON. The decreased relative abundance of Christensenellaceae and Rikenellaceae paired with the greater relative abundance of Selenomonadaceae in CWP could help explain greater propionate molar proportion and decreased ruminal pH previously observed for this treatment. The genera Olsenella a lactic acid-producing bacterium, had the greatest relative abundance in MOL. Incorporating TCWP or MOL as a partial replacement for starch was more conservative of fibrolytic bacterial taxa compared to CWP. Additionally, TCWP did not increase bacterial taxa associated with synthesis of lactate as compared to MOL. Overall, replacing starch with sugars is mostly conservative of the ruminal microbiome; however, changes observed coincide with differences observed in acetate and propionate proportions and ruminal pH.

Keywords: 16S rRNA; starch; sugar; treated whey.