The spatio-temporal distribution of alkaline phosphatase activity and phoD gene abundance and diversity in sediment of Sancha Lake

Sci Rep. 2023 Feb 22;13(1):3121. doi: 10.1038/s41598-023-29983-1.

Abstract

The bacterial phoD gene encoding alkaline phosphatase (ALP) plays an important role in the release of soluble reactive phosphorus (SRP) from organic phosphorus in ecosystems. However, phoD gene diversity and abundance in ecosystems is poorly understood. In the present study, we sampled the surface sediments and the overlying water of Sancha Lake at 9 different sampling sites, a typical eutrophic sub-deep freshwater lake in China, in April 15 (spring) and November 3 (autumn), 2017. High-throughput sequencing and qPCR were performed to analyze the diversity and abundance of the bacterial phoD gene in the sediments. We further discussed the relationships between the diversity and abundance of the phoD gene and environmental factors and ALP activity. A total of 881,717 valid sequences were obtained from 18 samples and were classified into 41 genera, 31 families, 23 orders, 12 classes, and 9 phyla and grouped into 477 OTUs. The dominant phyla were Proteobacteria and Actinobacteria. The phylogenetic tree based on the sequences of the phoD gene was plotted and composed of three branches. The genetic sequences were aligned predominantly with genera Pseudomonas, Streptomyces, Cupriavidus, and Paludisphaer. The phoD-harboring bacterial community structure showed a significant difference in spring and autumn, but no apparent spatial heterogeneity. The phoD gene abundances at different sampling points were significantly higher in autumn than in spring. In autumn and spring, the phoD gene abundance was significantly higher in the tail of lake and where cage culture used to be intensive. pH value, dissolved oxygen (DO), total organic carbon (TOC), ALP, and phosphorus were important environmental factors affecting the diversity of the phoD gene and the phoD-harboring bacterial community structure. Changes in phoD-harboring bacterial community structure, phoD gene abundance, and ALP activity were negatively correlated with SRP in overlying water. Our study indicated phoD-harboring bacteria in the sediments of Sancha Lake with the characteristics of high diversity and significant spatial and temporal heterogeneity in abundance and community structure, which played a important role in the release of SRP.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alkaline Phosphatase* / genetics
  • Bacteria / genetics
  • China
  • Ecosystem
  • Geologic Sediments / microbiology
  • Lakes* / microbiology
  • Phosphorus / analysis
  • Phylogeny

Substances

  • Alkaline Phosphatase
  • Phosphorus