Holey Ti3C2 MXene-Derived Anode Enables Boosted Kinetics in Lithium-Ion Capacitors

ACS Appl Mater Interfaces. 2023 Mar 8;15(9):12161-12170. doi: 10.1021/acsami.2c21327. Epub 2023 Feb 22.

Abstract

Lithium-ion capacitors (LICs) attract enormous attention because of the urgent demands for high power and energy density devices. However, the intrinsic imbalance between anodes and cathodes with different charge-storage mechanisms blocks the further improvement in energy and power density. MXenes, novel two-dimensional materials with metallic conductivity, accordion-like structure, and regulable interlayer spacing, are widely employed in electrochemical energy storage devices. Herein, we propose a holey Ti3C2 MXene-derived composite (pTi3C2/C) with enhanced kinetics for LICs. This strategy effectively decreases the surface groups (-F and -O) and generates expanded interplanar spacing. The in-plane pores of Ti3C2Tx lead to increased active sites and accelerated lithium-ion diffusion kinetics. Benefiting from the expanded interplanar spacing and accelerated lithium-ion diffusion, the pTi3C2/C as an anode implements excellent electrochemical property (capacity retention about 80% after 2000 cycles). Furthermore, the LIC fabricated with a pTi3C2/C anode and an activated carbon cathode displays a maximum energy density of 110 Wh kg-1 and a considerable energy density of 71 Wh kg-1 at 4673 W kg-1. This work provides an effective strategy to achieve high antioxidant capability and boosted electrochemical properties, which represents a new exploration of structural design and tuneable surface chemistry for MXene in LICs.

Keywords: anode material; fast ion diffusion kinetics; holey Ti3C2 MXene; in-plane pores; lithium-ion capacitors.